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Abstract—Quality of experience (QoE) has been widely 
recognized as the primary metric to evaluate user experience in 
multimedia applications. However, the QoE assessment of tactile 
virtual environments is still highly dependent on subjective 
measures. Inspired by the fact that physiological signals can 
characterize the user's emotional state, we propose a QoE 
measurement method for virtual reality (VR) with vibrotactile 
feedback based on frontal lobe power asymmetry (FLPA). The 
subjective score of vibrotactile experience in VR is used as the 
ground truth of QoE. The selection of QoE measurement 
indicators consists of two steps. First, the relationship between 
FLPA phenomenon and scores of QoE is preliminarily established 
by statistical methods and Spearman Correlation Coefficient. 
Then, the most important FLPA feature is selected by random 
forest, which is the best indicator for QoE measurement. The brain 
neural images show that vibrotactile feedback in VR can evoke 
FLPA phenomenon. Correlation analysis shows that there is a 
significant correlation between subjective scores of QoE and 
FLPA features. The classification results show that the selected 
best FLPA feature can be used as a physiological indicator to 
measure and predict QoE. We achieve mutual interpretation of 
EEG-based physiological measurements and subjective cognitive 
outcomes of QoE. 

 
Index Terms—Quality of experience, virtual reality, vibrotactile 

feedback, physiological measurement, frontal lobe power 
asymmetry. 

I. INTRODUCTION 

irtual haptic feedback has great potential in improving the 
realism and richness of the user interaction experience in 

virtual reality (VR) [1]-[3]. Quality of experience (QoE) of 
haptic virtual environments is an evolving research topic and 
taking QoE as the primary metric to evaluate VR experience 
has been generally accepted by researchers [4], [5]. Compared 
to vision and hearing, the technology to measure the impact of 
vibrotactile feedback on VR experience is still immature [6], 
especially the objective QoE measurement method. 

In the process of interaction with multimedia applications, 
users focus on the overall feeling of multi-dimensional sensory 
information integration. QoE is an overall metric of the quality 

 
 

of interaction between users and multimedia applications, 
which can be measured in many ways [2]. The International 
Telecommunication Union (ITU) defines QoE as the end-user 
overall subjective acceptability of applications or services [7]. 
According to the definition of QoE, scholars have classified 
different measurement parameters to meet the actual 
assessment needs. Without considering the impact of quality of 
service on user experience, we summarize the QoE evaluation 
methods as psychometric and physiological measures. 

Psychological measurement is a user-centered means to 
reflect the user's psychological state through user feedback. The 
parameters of psychological measurement in VR applications 
include cybersickness [8], immersion [1], [9], emotion [10], etc. 
Psychometry is a subjective assessment method, which reflects 
the unique perception state of each user through questionnaires. 
ITU recommends using mean opinion score to measure QoE 
[11], [12]. A specific group of subjects used a scale to 
subjectively score the videos watched in a specific 
environment, and the mean score of all subjects was used to 
represent the QoE [11]. Subjective evaluation is currently the 
mainstream method of QoE measurement [13]-[15], which 
reflects users' subjective feelings to a certain extent. But these 
methods rely on prior knowledge and conscious responses and 
often fail to provide insight into the underlying perceptual and 
cognitive processes. When questionnaires or scales do not 
reflect their inner feelings well, subjects may not be able to 
accurately express their assessments. 

Unlike questionnaires, physiological measurements reflect 
the state of users by directly measuring their implicit biological 
parameters. The effectiveness of some biological means has 
been verified in the QoE evaluation of multimedia applications, 
such as electroencephalography (EEG) [5], [10], [16], heart rate 
[4], [10], electrocardiography [9], etc. EEG is a minimally 
invasive electrophysiological measurement of scalp voltage 
changes. As a physiological measure of QoE [16], EEG has 
been widely used in visual and auditory research. Tao et al. [17] 
used the brain wave oscillations induced by negative emotions 
to calculate the user tolerance time for video rebuffering and 
then optimized the video rebuffering parameters to maximize 
QoE. Lin et al. [18] used ERP features evoked by traffic lights 
in the virtual dynamic driving environment to quantitatively 
evaluate the cognitive response of drivers and concluded that 
ERP can reflect the cognitive state. These studies using EEG to 
characterize the emotional state of users have provided a 
reference for our interest. However, their methods exploit the 
transient responses of brain potential [19], which may be 
limited in complex VR applications.  
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At present, researchers have begun to pay attention to the 
application of tactile feedback in VR [5], [8], [10]. To the best 
of our knowledge, studies assessing how vibrotactile feedback 
affects the VR experience still rely on subjective measures [8], 
[20]. There have been several studies exploring the use of EEG 
to identify haptic information. Golnaz et al. [21] used nonlinear 
features of EEG signals to successfully recognize three friction 
states during haptic interaction: dynamic, static, and no-friction. 
The maximum classification accuracy achieved was 78%. 
Özdenizci et al. [22] introduced an invariant representation 
learning network to identify three different types of textured 
surfaces with varying roughness levels in the process of active 
tactile detection. They achieved a classification accuracy of 
70%. These studies collectively demonstrate the potential of 
EEG in analyzing tactile objects. However, whether these 
theories can be applied to evaluate the haptic experience in VR 
scenes remains to be further analyzed.  

Emotion is a psychometric parameter of QoE, which can be 
reflected by physiological means of EEG [5]. Emotional terms 
are relative to the users, not the experience, which is the 
comprehensive expression of multiple sensory information 
[23]. The subjective feeling caused by external stimuli will be 
reflected in the EEG signal synchronously according to the 
physiological mechanism of brain convergence [24]. The 
feeling is the internal component of emotions and can be 
evoked by tactile stimuli [19]. It may be feasible to measure 
emotion by EEG to reflect the QoE of VR with vibrotactile 
feedback. Brain frontal lobe power asymmetry (FLPA) is the 
most studied and has a relatively mature theory among the 
many EEG-based measures of emotion. In the early stages of 
research on physiological measures of QoE in VR with 
vibrotactile feedback, choosing FLPA to measure emotion and 
reflect QoE is helpful for the development of research issues.  

The idea that FLPA can reflect emotional states [25] has been 
applied in many aspects. From the perspective of cognitive 
nerve, Reznik et al. [26] discussed the feasibility of FLPA to 
reflect the brain nerve correlation and psychological structure 
of users in the form of a review. Wacker et al. [27] used FLPA 
to measure emotional states and found that FLPA evoked by 
positive emotions had a strong correlation with state stability 
and flexibility of desire motivation. Thus, FLPA may have the 
potential to achieve mutual interpretation between 
physiological responses and psychological perception. In the 
application of emotion recognition, Moghimi et al. [28] used 
FLPA to classify user emotions in an audio-visual VR 
environment and obtained a satisfactory accuracy of emotion 
recognition. This may indicate that FLPA has strong 
environmental applicability. However, FLPA still has a lot of 
room for improvement. Petrantonakis et al. [29] introduced 
multi-dimensional directional information into the FLPA 
calculation method to improve the accuracy of emotion 
recognition. These studies provide theoretical support for using 
FLPA to evaluate the QoE of VR with vibrotactile feedback. 

In this paper, we use subjective measurement as the ground 
truth of QoE to verify the feasibility of the existing biological 
means to measure the QoE of VR with vibrotactile feedback. 
We focus on the EEG-based physiological measurement of 
QoE and apply it to the QoE evaluation of VR vibrotactile 
feedback. The scale score and FLPA are used to measure the 

emotional psychological and physiological characteristics of 
the users, and the correlation between them is tested. A 
classification experiment is designed to verify the feasibility of 
FLPA as a QoE evaluation indicator. Our work fills a gap in the 
physiological measurement method of QoE for vibrotactile 
feedback in VR. User perception in the process of interaction 
with VR is multi-factor, and subjective scoring alone may not 
fully reflect the real measurement of user experience. Our study 
aims to complement rather than replace existing psychometric 
measures. We expect to contribute to the improvement of the 
subjective and objective evaluation system of QoE. The main 
contributions are summarized as follows: 
•  We propose a new physiological measure of QoE for 

multimedia applications. To our knowledge, this should be 
an early study of objective evaluation methods for QoE in 
virtual scenes with audio-visual touch 3-dimensional 
information input. 

•  We find that using vibrotactile feedback of different 
qualities in VR can evoke different FLPA phenomena in 
the brain. Correlation analysis shows that FLPA features 
are significantly correlated with the subjective scores of 
QoE. 

•  We introduce random forest to rank the FLPA features of 
different rhythms and positions according to their 
contribution to QoE evaluation of VR with vibrotactile 
feedback. The dichotomous results of positive and 
negative emotions indicate that FLPA can be used to 
measure and predict QoE in multimedia applications.  

The remainder of this paper is organized as follows. Section 
II introduces FLPA and the corresponding feature selection 
method. The detailed design of the user study is described in 
Section III. Section IV shows the experimental results and 
analysis. Some discussions are presented in Section V. Section 
VI gives the conclusion of this paper.  

II. METHOD 

We inherit the view from [5] that emotion is a psychometric 
parameter of QoE and we expect to find an EEG-based emotion 
measure to evaluate the QoE of VR with vibrotactile feedback. 
To determine the specific indicators used to measure QoE, we 
carry out our work from three aspects. The significance of 
correlation preliminarily confirms the intrinsic relationship 
between FLPA features and subjective scores of QoE. The 
FLPA features are ranked according to their importance to QoE 
prediction, and the most important feature is used as the best 
indicator to measure QoE. Classification error is used to test the 
performance of the selected indicators in evaluating QoE. The 
whole process of selecting QoE physiological measurement 
indicators is shown in Fig. 1. In this section, the FLPA is first 
introduced, and then the three aspects mentioned above are 
described in detail. 

A. Frontal Lobe Power Asymmetry 

The right prefrontal lobe of the brain is thought to be 
involved in emotional functioning. Positive emotions have an 
inhibitory effect on the right cortical network, and there will be 
an asymmetry phenomenon of the left-side power higher than 
the right-side power in the prefrontal lobe [30, 35]. When the 
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users have positive emotions about a VR application, they 
generally give higher than the average subjective evaluation. In 
this case, the two measures may be related in some way. In 
psychology, emotions are usually analyzed in a two-
dimensional valence/arousal space [31]. According to the 
valence dimension of the valence/arousal space, the left 
lateralization of frontal lobe power represents positive emotion, 
while the right lateralization of frontal lobe power represents 
negative emotion [29]. The value of FLPA represents the 
degree of lateralization. These representations correspond to the 
subjective evaluation of QoE in the form of a scale, and the 
specific relationship between them is the focus of this paper. 

In the numerous theoretical studies of FLPA, there is no 
unified conclusion about which rhythm of EEG and which 
spatial location in the brain are related to emotion. According 
to the review literature [26], different from the frequency band 
of 8-12Hz used by Davidson [25], most of the later studies [32], 
[33] chose 8-13Hz as Alpha rhythm. Other studies have 
demonstrated the feasibility of rhythms other than Alpha to 
reflect emotions, including Theta (4-7Hz) [30], Beta (14-30Hz) 
[34], and Gamma (31-100Hz) [35]. Many studies have shown 
that brain regions associated with emotion include F3-F4 [33], 
F5-F6 [36], and F7-F8 [32]. Since the specific rhythm and 
spatial position of the brain that can reflect emotions could not 
be determined, all the common rhythms and electrodes are used. 
The rhythms include Theta (4-7Hz), Alpha (8-13Hz), Beta (14-
30Hz), and Gamma (31-100Hz). Electrodes include F3-F4, F5-
F6, F7-F8. In addition, we also studied the continuous 
frequency bands of these four rhythm combinations, including 
4-13Hz, 4-30Hz, 4-100Hz, 8-30Hz, 8-100Hz, and 13-100Hz. 
The new rhythms are named TA, TAB, TABG, AB, ABG, and 
BG by combining the initials of all the bands it contains. The 
combination of two electrode pairs and the combination of three 
electrode pairs are added in the spatial position. Therefore, we 
use 10 rhythms and 7 spatial locations to get a total of 70 FLPA 
features. 

Davidson mentioned in [25, 30] that the calculation method 
of FLPA is 
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where LP  is left frontal lobe power and its corresponding 

electrodes are F3, F5, and F7; RP  is right frontal lobe power and 
its corresponding electrodes are F4, F6, and F8. Reznik 
summarized in [26] that most of the subsequent researchers 
adopted the logarithmic method, and the formula is 
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We test both computations in Section Ⅳ to determine which 
one better suited our needs. 

EEG data is first bandpass filtered (FIR) at 4-100Hz, after 
which the average of left and right earlobes is applied as a re-
reference. Then we manually remove the blinking instances 
according to the independent component analysis.  

B. Correlation 

The subjectively measured data do not conform to a normal 
distribution according to the analysis in Section Ⅳ. Therefore, 
the Spearman Correlation Coefficient (SCC) is calculated to 
represent the correlation. 

Let  X nx  and  , 1,2 ,ny n N Y   denote two 
sets of data in the form of column vectors of length N . SCC is 
equivalent to Pearson's Linear Correlation Coefficient (PLCC) 
applied to the rankings of X  and Y . SCC can be calculated as 
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where 
nxR is the rank value of nx . Since the rank values are 

sequential from 1 to N , the mean of all the rank values is 
 1 2N  . 

C. Random Forest 

Random forest (RF) is an ensemble learning algorithm based 
on a decision tree. The details of RF ideas and construction 
methods can be found in many studies [9]. We only introduce 
how to rank FLPA features according to their importance to 
QoE evaluation.  

Each sampling generates a sample set, and the remaining 
samples in the total sample that have not been sampled are 
called out-of-bag (OoB) data. OoB data error can be used to 

 

Fig. 1. The whole process of selecting the physiological measurement indicators of QoE. 
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measure the importance of features. The calculation of feature 
importance consists of two steps: 

Step 1: After learning M  trees of RF, use each tree to 
calculate the classification error of corresponding OoB data, 
which is denoted as   , 1,2, ,mErr m M  . 

Step 2: Randomly add some noise to the i th feature (or 
randomly sort the value of the current feature), and calculate the 
classification error again for the OoB data with noise to get 
 i

mErr . Then the calculation formula of feature importance is 

 
1

1 M
i

i m m
m

import Err Err
M 

  .                     (4) 

The larger iimport , the more important the i th feature is. 
Through the above two steps, each feature is given a value that 
represents its influence on the classification result. Features 
with low importance have little influence on the classification 
results of OoB data, and adding noise will not change the 
classification error much theoretically. However, adding noise 
to important features will lead to significantly higher 
classification errors. This explains the rationality of OoB data 
error to measure the importance of features. 

D. Classifier  

Classification is a way to verify the validity of features. The 
classifier trained with the selected optimal FLPA can be used to 
predict the subjective score representing emotions. The 
feasibility of EEG-based physiological measurements for 
evaluating QoE is verified when the prediction accuracy 
reaches an accepted range. Classifiers including linear 
discriminant analysis (LDA), K-nearest neighbor (KNN) (K 
=7), naive Bayes (NB), and support vector machine (SVM) are 
used for the classification tasks.  

The performance of all classifiers is assessed using the 
Leave-One-Out (LOO) cross-validation method [21]. LOO is a 
method of training and testing a classifier using all the data in a 
dataset. All L  samples in the dataset are divided into two parts, 
the first with 1L   samples is the training set, and the 
remaining part with one sample is the test set. Each sample will 
be used as the test set once, and there will be L  iterations. 

All FLPA features are employed as inputs for the classifier, 
while emotion labels serve as outputs of the classifier. For a 
single sample, the prediction is either true or false. The 
classification accuracy is calculated by  

CorL
acc

L
 ,                                   (5) 

where CorL  is the number of correct predictions. 

III. USER STUDY 

Emotion is a parameter of QoE, which can be measured by 
subjective scores or reflected in EEG. We conducted a user 
study using vibration stimuli of different frequencies to explore 
the characteristics of users' neural responses under different 
qualities of tactile feedback in VR and to analyze the correlation 
between physiological and psychological measures of VR 
experience. 

A. Apparatus 

Shooting games, as a common application in VR, are chosen 

to test our idea. The controller that can provide vibration 
stimulation is independently designed by the research group, 
and its details are described in [37]. The controller can provide 
continuous vibrotactile feedback when the finger pulls the 
trigger without release. The vibration frequency of the 
controller is adjustable between 0 to 60Hz. Vibration frequency 
is the only variable in the user study, and the frequencies used 
in this paper include 0Hz, 1Hz, 15Hz, and 60Hz. 0Hz indicates 
no vibration stimulus. We fix two identical controllers together 
to simulate the appearance of an automatic rifle. The vibration 
feedback provided by the controllers is a rendering of the 
directional force perception, simulating the recoil during 
shooting. The parameters of the rifle simulated by the 
controllers are shown in TABLE I. 

To keep the original environment of VR while reducing the 
visual effects on the EEG, we choose a relatively simple visual 
interaction interface. The visual interface is presented through 
a head-mounted display (HMD). When the user pulls the trigger 
to the sky or ground, there is a visual effect of bullet flight in 
HMD. The gun displayed in HMD looks like M4A1. The 
theoretical rate of fire of real M4A1 is 600-900rpm, 
corresponding to visual shooting frequencies of 10-15Hz. 
Compared with the extreme frequencies of 1Hz and 60Hz, the 
15Hz vibration stimulus could theoretically provide the highest 

TABLE I 
THE PARAMETERS OF THE RIFLE SIMULATED BY THE 

CONTROLLERS 

Force feedback 
Weight (g) Size (cm) 

Form Magnitude (N) Rate (Hz) 

Recoil 23 0, 1, 15, 60 501.8 33 1 3 .5 4 

 

Fig. 2. The experimental environment. The subject wearing an 
Oculus Rift and EEG cap seats comfortably in front of the table 
and interacts with the rifle simulated by the controllers. 
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realism in the selected VR presentation scene. Instead of using 
the HMD's headset, we use noise-canceling earphones to ensure 
that the subjects are not affected by the vibrational sound of the 
controller. We used the whole set of Oculus devices, which 
have a published latency of less than 20ms. To minimize the 
increase of VR interaction delay, Oculus Touch is fixed to the 
front end of the controller as a locator. Fig. 2 shows an overview 
of the experimental environment. 

Brain activity is acquired using a 64-channel EEG amplifier 
(Brain Amps, Brain Products, Germany) and is recorded using 
a Brain Vision Recorder (Brain Products, Germany) with a 
1000Hz sampling rate. The EEG cap consists of 64 actiCAP 
active electrodes (Brain Products, Germany) positioned in line 
with the 10-20 system. Electrode FCz is used as the reference. 
Signal denoising and other preprocessing processes are 
completed by Brain Vision Analyzer 2.2 (Brain Products, 
Germany). The rest of the analysis is done by MATLAB2018b. 

B. Subjects 

Thirty-two right-handed subjects (18 male) from Jilin 
University, aged 20 to 27 (Mean=23.84, Standard 
Deviation=1.78), with a bachelor's degree or above, are 
recruited. Of the selected 32 subjects, 22 had fired live 
ammunition at least five times (18 with rifles and 12 with 
handguns). The remaining 10 had at least five years of 
experience playing virtual shooters on the terminal. They were 
all interested in shooter games on virtual terminals and had a 
general understanding of the differences between real shooting 
sports and virtual shooting games. All participants had 
experienced shooting games in a VR environment before and 
had no dizziness reaction to VR. Before the experiment, the 
subjects had a certain understanding of the experiment content 
and signed an informed consent. The experimental procedure is 
approved by the ethical committee of Jilin University.  

C. Questionnaire 

Most parameters of QoE can be measured by questionnaires. 
In this paper, a questionnaire is designed to evaluate the 
emotional parameter of QoE. The questionnaire contained six 
question items. The words used to describe emotional states in 
the first five question items are shown in TABLE II. In each 
question item, subjects are required to determine a score from 
an 11-point scale that corresponded to their emotional state 
during the VR experience. Scores range from 0 to 10, with 0 
representing the most negative and 10 indicating the most 
positive. A score of 5 indicates a neutral emotion. In the sixth 
question item, participants are asked to judge "Do the emotional 
descriptors used in the first five question items accurately 
reflect your emotional state?". If the answer is "no", the subject 
is asked to provide more reasonable words to describe the 
emotion. 

The subjects can make voluntary statements after filling out 
the questionnaire. The content of the statement could be a 
question about the task, a description of feelings, a suggestion 
for the experiment, anything of interest, etc. The assistant 
records the content of the voluntary statements of the subjects 
and confirms the questionnaire results with the subjects again. 

D. Protocol 

In this paper, we use a common protocol to evoke EEG 

steady-state response, i.e., continuous periodic stimulus 
protocol at a certain rate [19].  

In preparation, the subjects do familiarity training in the VR 
environment with only audio-visual feedback, including game 
operation, firing mode, user experience, etc. Through mental 
count training, subjects try their best to ensure that the mental 
count corresponds to the time. The subjects are told other 
precautions, including keeping their wrists still as much as 
possible and not blinking when pulling the trigger, and only 
asking questions when not pulling the trigger. In addition, the 
subjects adjust the seats independently to ensure a comfortable 
experience environment. 

The formal experiment is divided into mental scoring and 
EEG recording, as shown in Fig. 3. Each trial follows the same 
protocol, as shown in Fig. 4. Before each trial, the subjects are 
told the frequency of the vibration stimulus. After receiving the 
prompt to start the experiment, the subjects begin to mentally 
count and fire or not fire according to the set time rules. The 
finger should keep pulling the trigger while firing. After the 
third firing, one trial is over. We limit the single trial to 50 
seconds. No vibration is applied for the first 10 seconds of 
firing, and its experience serves as a reference for subsequent 
QoE assessments of vibration stimuli. The same vibration 
stimulus is applied for the next two 10 seconds of firing, which 
are the object to be evaluated. The time is controlled by mental 
counting. There should be at least 1 minute between the two 

 

Fig. 3. The entire experimental process of a single subject. Black 
triangles and rectangles represent the start and end of a single 
experiment session, respectively. 

 

Fig. 4. The experimental protocol for mental scoring and EEG 
recording. The downward arrow represents EEG markers in the 
process of EEG recording, where black and white represent the 
start and end of pulling the trigger, respectively. 

TABLE Ⅱ 
WORDS DESCRIBING EMOTIONAL STATES IN THE QUESTIONNAIRE 

 

Item No. Negative (0 - 4 points) Positive (6 - 10 points) 

1 Dissatisfied Pleased 

2 Upset Happy 

3 Bored Interested 

4 Withdrawal Approachable 

5 Disgusted Liked 

 

Mental scoring Rest for 30s EEG recording Questionnaire

FireNon-Fire Rest
5s 5s10s10s 10s 10s 1min

FireNon-Fire FireNon-Fire
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trials to eliminate the effects of the previous trial.  

In the mental scoring process, the subjects are asked to 
quantitatively evaluate the emotional states of the VR 
experience under different vibration stimuli. The subjects could 
independently choose any optional vibration frequency to re-
run the trial until all the vibration stimuli are scored in the mind. 
After 30 seconds of rest, the EEG recording is performed, and 
each vibration stimulus is applied once at the controllers in 
random order. When the subject begins to pull the trigger, the 
EEG data is synchronously marked once. The data for 
subsequent analyses are EEG from the third firing of each trial. 
The score is a reference-based relative result, so we correct the 
data by subtracting the brain power of the first firing from that 
of the third firing for each trial. The subjects begin filling out 
questionnaires immediately after EEG recording. 

IV. RESULTS AND ANALYSIS 

The subjective measurements and FLPA phenomena under 
different vibration stimuli are first analyzed statistically in this 
section. SCC and RF are used to analyze the relationship 
between FLPA features and subjective ratings. The FLPA 
features that can be used as QoE evaluation metrics are 
identified. Finally, the effectiveness of the selected evaluation 
indicators is verified by the classification task. 

A. Subjective Measure 

Subjects use a scale to measure the emotional state of their 
VR experience. The evaluation results of the rationality of the 
questionnaire are shown in TABLE III. According to TABLE 
III, the questionnaire we used in the user study is reliable and 
valid. In response to the sixth question item of the 
questionnaire, 29 subjects believed that the first five question 
items in the questionnaire could well describe their emotional 
state. Only 3 people indicate that adding more question items 
might better reflect their feelings. Two of them mention the 
words: “excited”, “intense” and “focused”. These three words 
describe the arousal dimension of emotional states [31], which 
is rarely mentioned in FLPA research. The remaining one 
cannot provide a more appropriate word. Therefore, it is 
reasonable to use the subjective score as the ground truth to 
reflect the quality of tactile feedback. 

The overall statistical results of the ratings of 5 question 
items in the questionnaire concerning emotional evaluation are 
shown in Fig. 5. There is a significant difference between the 
ratings of vibration stimulation at different frequencies. The 
rating of the 15Hz vibration stimulation is significantly higher 
than that of the other two frequencies, which is consistent with 
our hypothesis that the 15Hz vibrotactile feedback can render 
the best realism. The emotional state of the subjects under 1Hz 
vibration stimulation is basically negative, indicating that 
inappropriate vibrotactile feedback in VR would lead to poor 
user experience. The evaluation results of the 60Hz vibration 
stimulus are quite different. The poor concentration of scores 
for the 60Hz vibration stimulation may indicate that subjects 
could not agree on the experience of applying high-frequency 
vibrotactile feedback on the simulated gun.  

According to the voluntary statements of the subjects, some 
subjects with multiple live firing experiences perceive a large 

gap between the rifle simulated by controllers and the real gun. 
But they also think the controllers are good for gaming 
applications. Most of the subjects are exposed to VR with haptic 
feedback for the first time, and they believe that controllers with 
reasonable parameter settings would improve the QoE of VR. 
In general, the three vibration stimuli correspond to the “good”, 
“general” and “bad” three results of the rendering, and also 
correspond to the “positive”, “neutral” and “negative” three 
emotional states of the VR experience. Therefore, we conclude 
that it is reasonable to use the selected vibration stimuli to 
analyze the relationship between physiological and 
psychological measures of QoE. 

B. FLPA Phenomenon 

FLPA phenomenon appears in the brain neural images of the 
subjects under different vibration stimuli in VR scenes. 
Considering that different subjects have different FLPA 
phenomena in response to vibrotactile feedback, we take a 
random subject's brain neural image as an example, as shown 
in Fig. 6, to analyze the relationship between the scores and 
FLPA phenomena.  

Neural images of different rhythms show different 
asymmetries in response to different vibration stimuli. 
Theoretically, higher power in the left frontal lobe means the 
subject has positive emotions [29], corresponding to an 
evaluation score higher than 5. Some of the phenomena are 
roughly consistent with the scores. In the example, left frontal 
lobe power is higher for all rhythms under 15Hz vibration 
stimulation, while the subject gave a rating greater than 5. 
However, some FLPA phenomena do not correspond to the 
score completely. For example, the right frontal power of the 
Gamma rhythm is obviously higher in response to 60Hz 
vibration stimulation, but the subject gave a rating higher than 
5. In addition, the FLPA phenomena of all brain rhythms are 

 

Fig. 5. Statistical results of the scores used to evaluate emotional 
states. Repeated Measures ANOVA is used to analyze the rating 
difference between vibration stimuli at different frequencies, and 
Bonferroni-Holm analysis is used for pair-wise post-hoc tests. 
“***” represents p < 0.001. 

TABLE III 
ASSESSMENT OF THE RATIONALITY OF THE QUESTIONNAIRE 

 

Reliability Validity 

Cronbach Kaiser-Meyer-Olkin Bartlett’s test of sphericity 

0.9170   KMO=0.9080 p = 0.0000 

 

S
co

re
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not obvious without vibration stimulation. It may be that a large 
amount of training makes the subjects have no emotional 
changes for VR without vibrotactile feedback. 

In the experience of VR with vibrotactile feedback, the brain 
FLPA of subjects may contain information about feelings. The 
FLPA phenomenon of the subjects used as an example is not 
unique. However, the electrode location and brain rhythm of the 
emotion-reflecting FLPA are not always the same for each 
subject. The proportion of people with relatively higher left 
frontal lobe power in all samples under different vibration 
stimuli is counted, and the statistical results of partial rhythms 
are shown in Fig. 7. If the subjective score shown in Fig. 5 is 
taken as the basis, the ratio corresponding to the 15Hz vibration 
stimulus should be greater than 0.5, while the ratio 

corresponding to the 1Hz vibration stimulus should be less than 
0.5. The subjective score of the 60Hz vibration stimulus 
fluctuated greatly, and the corresponding ratio could not be 
determined temporarily. Only Theta and Alpha rhythms in Fig. 
7 can meet the above conditions. Therefore, the optimal FLPA 
for QoE evaluation should be located in these two rhythms. It 
is worth noting that the ideal 0Hz vibration stimulation cannot 
induce FLPA, which is not consistent with the results in Fig. 7. 
It is necessary to use the neural images of 0Hz vibration 
stimulation to correct the brain maps of other frequency 
vibration stimuli in our study. 

Based on the above analysis and the fact that only vibrotactile 
feedback is set as the stimulus variable in the user study, we 
conservatively believe that different vibration stimuli are the 
main factors leading to different FLPA. It also can be concluded 
that there is a certain internal relationship between some FLPA 
features of measuring emotion and subjective scores of 
measuring QoE in VR experience with vibrotactile feedback. 
Our purpose is to establish the relationship between the above 
two and determine the specific FLPA features to measure 
emotion to reflect QoE. 

  

Fig. 6. An example of FLPA phenomenon under different 
vibration stimuli in VR.  

    

Fig. 7. The proportion of samples with higher left frontal lobe 
power in all samples under different vibration stimuli. 

 
TABLE Ⅳ 

THE RESULTS OF SCC BETWEEN FLPA AND SUBJECTIVE SCORES (11-POINT SCALE)  
 

  Theta Alpha Beta Gamma TA TAB TABG AB ABG BG 

F3-F4 
Sig. (2-tailed) 1.128E-5 1.009E-9 0.0078 0.0619 4.027E-8 7.466E-5 0.0133 2.482E-4 0.0144 0.0215 

Correlation 0.3110 0.4227 0.1916 0.1350 0.3834 0.2819 0.1783 0.2615 0.1764 0.1658 

F5-F6 
Sig. (2-tailed) 3.048E-6 2.08E-10 0.0850 0.5749 3.38E-10 1.109E-4 0.3848 3.765E-4 0.5602 0.2872 

Correlation 0.3295 0.4381 0.1246 0.0407 0.4335 0.2753 0.0631 0.2541 0.0423 0.0772 

F7-F8 
Sig. (2-tailed) 2.418E-7 6.65E-15 1.267E-5 0.0074 3.08E-13 8.07E-10 7.747E-4 1.875E-9 6.166E-4 0.0010 

Correlation 0.3623 0.5235 0.3093 0.1926 0.4946 0.4249 0.2406 0.4165 0.2449 0.2356 

F3-F4 
F5-F6 

Sig. (2-tailed) 4.071E-8 1.63E-14 0.0195 0.4553 4.40E-13 1.429E-6 0.3975 9.750E-6 0.3176 0.2769 

Correlation 0.3833 0.5170 0.1685 0.0542 0.4917 0.3397 0.0614 0.3132 0.0725 0.0789 

F3-F4 
F7-F8 

Sig. (2-tailed) 2.45E-10 2.60E-18 3.002E-5 0.0020 9.40E-17 1.61E-10 2.465E-4 6.01E-10 2.261E-4 3.724E-4 

Correlation 0.4366 0.5753 0.2963 0.2214 0.5527 0.4406 0.2616 0.4279 0.2632 0.2543 

F5-F6 
F7-F8 

Sig. (2-tailed) 3.390E-9 2.55E-19 1.783E-4 0.0303 2.91E-17 1.11E-11 0.1218 3.19E-10 0.0662 0.0060 

Correlation 0.4104 0.5890 0.2673 0.1564 0.5603 0.4648 0.1121 0.4340 0.1329 0.1975 

F3-F4 
F5-F6 
F7-F8 

Sig. (2-tailed) 8.87E-11 8.40E-22 2.303E-4 0.0295 6.02E-19 1.36E-11 0.0240 2.75E-10 0.0152 0.0059 

Correlation 0.4461 0.6203 0.2628 0.1572 0.5840 0.4630 0.1629 0.4355 0.1749 0.1981 

 
The bold number indicates p<0.05. 
 

Theta Alpha Beta Gamma TABG
Rhythm
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C. Feature Selection 

There is a strong correlation between the EEGs of different 
rhythms and different positions. However, not all FLPA 
features are effective in measuring QoE. Among the FLPA 
features that can reflect emotion, one or a set of features may 
be the best choice to evaluate QoE. Therefore, it is necessary to 
select features of FLPA. 

To preliminarily screen the features of FLPA that can 
measure QoE, correlation analysis is conducted between FLPA 
features and subjective scores. The result of the One-sample 
Kolmogorov-Smirnov test (H = 1, p = 8.5461E-06) shows that 
the score data did not conform to a normal distribution, so SCC 
is used for subsequent correlation analysis. Corresponding to 
Eq. (1) and Eq. (2), we name the FLPA calculation method as 
Subtract and Logarithm, respectively. Since SCC is a rank 
correlation coefficient, the correlation results between the 
subjective score and FLAP obtained by these two methods are 
the same, as shown in TABLE Ⅳ. To facilitate the description 
of specific FLPA feature, we name each FLPA feature 
according to its row and column in TABLE Ⅳ. In addition, 
column 10 is denoted by 0. For example, the FLPA feature in 
row 6, column 10 of TABLE Ⅳ is named 60F . 

It can be seen that most FLPA features are significantly 
correlated with subjective scores. From a rhythmic perspective 
(columns), some FLPA features containing Beta or Gamma 
bands are not significantly correlated with subjective scores. It 
may be that the FLPA of Theta and Alpha or a combination of 
both can more accurately reflect the user's QoE. The Alpha 
rhythm (column 2) has the highest correlation coefficient at all 
locations, but the correlation decreases when combined with 
other bands. It can be explained that FLPA features in other 
frequency bands are equivalent to signals with low signal-
noise-ratios, and the addition of noise interference makes the 
correlation of Alpha rhythm smaller. From a positional 
perspective (rows), there is a significant correlation between 
subjective scores and FLPA features including electrode pairs 
F7-F8. The FLPA at the electrode pairs F7-F8 may contain 
more user experience information. Most combinations of 
electrode pairs have higher correlation coefficients than single 
electrode pairs. It can be interpreted that there is no inclusion 
relationship between the user experience information reflected 
by FLPA at different locations, and the combination of 
electrode pairs achieves the mutual complement of user 
experience information. We can conclude that Alpha is the best 
frequency band to reflect user experience, and each electrode 
pairs contains unique sensory information. The FLPA feature 

72F  with the largest correlation coefficient in TABLE Ⅳ is 
probably the most important feature that can be used to measure 
QoE. 

RF is further used to analyze the importance of each FLPA 
feature. Due to the randomness in each process of RF, we use 
the average value of feature importance calculated ten times as 
a reference to rank the contribution of different FLPA features 
to QoE evaluation. Considering the page size limitation, we 
visually rank the top 20% of important FLPA features, as shown 
in Fig. 8. Under the two calculation methods of FLPA, 72F
makes the largest contribution to the classification, followed by 

75F  and 62F . These conclusions are consistent with those in 

TABLE Ⅳ.  
However, taking the subjective score as the classification 

output means performing the classification task of 11 classes. 
Our sample number is not enough to ensure the classification 
accuracy of 11 classes. The classification error of the two FLPA 
calculation methods is 0.6690±0.0512 and 0.7150±0.0783, 
respectively. Therefore, we reduce the number of categories 
and divide the 11 score values into two classes to ensure 
classification accuracy. Scores greater than 5 are assigned 
positive labels, and the rest are assigned negative labels. This 
way is similar to a 2-point scale. Fewer categories mean more 
ambiguity in QoE description, but it can verify the feasibility of 
FLPA to measure QoE. 

The results of SCC between the FLPA and the 2-point 
subjective score are shown in TABLE Ⅴ. The FLPA of all 
rhythms at electrode pairs F3-F4 is significantly correlated with 
the subjective score, which is different from the results in 
TABLE Ⅳ. In addition, all the correlation coefficients in 
TABLE Ⅴ are lower than those in TABLE Ⅳ for the same 
coordinates. However, the feature with the largest correlation 
coefficient is still 72F . The ranking result of FLPA feature 
importance is shown in Fig. 9. 72F  is the most important 
feature, which is consistent with the results shown in Fig. 8. But 
the ranking of features after 72F  has changed. The classification 
error of the two FLPA calculation methods in the two-
classification is 0.2464 ± 0.0440 and 0.2688 ± 0.0476, 
respectively. According to the results of classification error of 
the 11-point scale and 2-point scale, the Logarithmic method is 
better than the Subtraction method.  

Based on the above analysis, the 72F  calculated Logarithmic 

  

Fig. 8. The top 20% of FLPA feature importance ranking results 
(11-point scale). 

  

Fig. 9. The top 20% of FLPA feature importance ranking results 
(2-point scale). 
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may be the best indicator for evaluating QoE, which will be 
further verified by classification prediction. 

D. Classification Prediction 

Multiple classifiers are used to verify the performance of the 
selected metrics on the measured QoE. The accuracy of 
classification is calculated by the LOO cross-validation 
method.  

To verify that 72F  is more suitable than other features for 
QoE measurement, features ranked in the top 20% of 
importance, as well as features ranked in 20, 30, 40, 50, 60, and 
70 are used for comparison. The classification results are shown 
in Fig. 10. It can be seen that among all the classification results, 
the maximum classification accuracy is obtained by the feature 

72F  and SVM classifier. The classification accuracy of KNN is 
0.7135, which is the lowest classification accuracy among the 
four classifiers using 72F . The maximum classification 
accuracy represents the potential of the feature for 
classification, while the minimum classification accuracy 
represents the stability of the feature for classification. With 
these two properties as a reference, only the classification 
results of 62F  are barely close to those of 72F . The 
classification results of the remaining features are obviously 
lower than those of 72F . 

The number of features is gradually increased according to 
their importance order to further verify the performance of a 
single feature 72F  in QoE evaluation. The classification results 
are shown in Fig. 11. The impact of increasing number of 
features on classification accuracy is a major concern. The 
classification accuracy of all classifiers fluctuates irregularly 
with the increase in the number of features. The classification 
accuracy is the highest when the number of features reaches 10 
and then shows a downward trend. It may be that redundant 

features bring a lot of interference factors so increasing the 
number of features does not steadily improve the classification 
accuracy.  

The classification accuracy using SVM and 72F can reach 
0.75, which is slightly lower than the maximum classification 
accuracy of 0.77 in Fig. 11. If time cost is taken into account, 
we think the difference is tolerable. In other words, when using 

    

Fig. 11. Classification results using different numbers of features. 

         

Fig. 10. Classification results using a single feature. 

 

TABLE Ⅴ 
THE RESULTS OF SCC BETWEEN FLPA AND SUBJECTIVE SCORES (2-POINT SCALE) 

 

  Theta Alpha Beta Gamma TA TAB TABG AB ABG BG 

F3-F4 
Sig. (2-tailed) 3.888E-6 1.512E-8 9.258E-4 0.0131 5.442E-8 1.266E-5 0.0087 6.418E-5 0.0067 0.0026 

Correlation 0.3262 0.3944 0.2372 0.1788 0.3800 0.3093 0.1889 0.2843 0.1949 0.2159 

F5-F6 
Sig. (2-tailed) 2.171E-4 2.525E-8 0.1580 0.7603 3.639E-7 7.459E-9 0.2704 0.0022 0.4245 0.4844 

Correlation 0.2639 0.3887 0.1023 0.0222 0.3573 0.2413 0.0799 0.2199 0.0580 0.0508 

F7-F8 
Sig. (2-tailed) 2.104E-5 9.64E-10 2.608E-4 0.0040 3.537E-9 8.661E-7 0.0013 1.211E-6 0.0012 0.0013 

Correlation 0.3018 0.4232 0.2607 0.2069 0.4099 0.3463 0.2305 0.3419 0.2320 0.2302 

F3-F4 
F5-F6 

Sig. (2-tailed) 7.700E-7 2.13E-12 0.0222 0.5713 9.84E-11 7.614E-6 0.4140 3.24E-5 0.3249 0.3862 

Correlation 0.3478 0.4789 0.1650 0.0411 0.4452 0.3167 0.0593 0.2951 0.0714 0.0629 

F3-F4 
F7-F8 

Sig. (2-tailed) 6.719E-9 1.56E-13 6.418E-5 2.810E-4 4.08E-13 2.024E-8 8.102E-5 2.939E-8 1.055E-7 7.470E-5 

Correlation 0.4040 0.4999 0.2843 0.2593 0.4923 0.3912 0.2805 0.3870 0.2762 0.2819 

F5-F6 
F7-F8 

Sig. (2-tailed) 3.252E-6 7.36E-13 0.0034 0.0571 1.85E-11 4.613E-8 0.2050 3.927E-7 0.1460 0.0197 

Correlation 0.3287 0.4876 0.2103 0.1375 0.4603 0.3819 0.0919 0.3563 0.1053 0.1682 

F3-F4 
F5-F6 
F7-F8 

Sig. (2-tailed) 2.130E-8 4.36E-16 0.0015 0.0345 1.03E-13 8.207E-9 0.0266 5.532E-8 0.0220 0.0104 

Correlation 0.3906 0.5425 0.2281 0.1527 0.5031 0.4010 0.1601 0.3798 0.1652 0.1845 

 
The bold number indicates p<0.05. 
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a single feature 72F  for the classification task, we are 75% 
confident that our predictions are correct. Therefore, it is 
feasible to use FLPA features, especially 72F , to measure the 
QoE of VR with vibrotactile feedback. 

V. DISCUSSION 

A. Interaction latency 

In the user study, we make use of established commercial VR 
products to minimize any potential increase in interaction 
latency. Both audio-visual and haptic presentations are 
triggered by the controllers, with any additional delay being 
primarily attributed to the system. In general, when the 
interaction latency exceeds 20ms, the user will experience 
sensory conflict and even feel dizzy. Unfortunately, we lack the 
necessary experimental conditions to directly measure the 
overall device interaction latency. However, it is worth noting 
that none of the participants reported any feelings of delay or 
cybersickness in the questionnaire. Not receiving any feedback 
from users regarding the latency does not necessarily mean that 
there is no interaction latency. We can only conservatively 
assume that it does not have an obvious impact on our findings. 

B. Classification Accuracy 

EEG is a complex signal which is non-stationary and 
nonlinear. The acquisition and analysis of EEG data are easily 
disturbed by various factors. Due to the few relevant studies 
available for reference, we may not have reached the optimum 
in the selection of subjects, the design of experiments, and the 
method of classification. Under our best efforts, the 
classification accuracy of this paper is between 0.7 and 0.8. 
Referring to the results of references [21] and [22], we believe 
that the accuracy is within an acceptable range for the study of 
EEG signal analysis. The target information extracted from 
complex EEG signal still contains a lot of interfering noise. In 
the early stages of studying the use of EEG to measure the 
experience of VR with haptic feedback, we conservatively 
believe that the conclusions we have drawn are valuable for 
subsequent research on objective QoE evaluation. 

C. Vibration and Motor Sensitivity of EEG 

EEG is very movement-sensitive and even the slightest of 
vibrations can interfere with its readings. Vibration may further 
reduce the signal-to-noise ratio of EEG and increase the 
difficulty of extracting target information from EEG. However, 
vibration in this paper is not an interference factor, but a sensory 
information input mode in itself. The subjects avoided the 
movement of other limb parts to affect the EEG data by keeping 
their wrists still and so on. When the effects of vibration are 
confined to the hand, we believe that the recorded EEG 
containing vibration information is usable for subsequent data 
analysis. 

D. Limitations 

Subjective scoring is the measurement standard of QoE in 
this paper. The selection of subjects is one of the key links to 
ensure the validity and stability of experimental results, which 
is reflected in the accuracy of subjective scoring. Due to the 
Novel Coronavirus outbreak, subjects can only be recruited at 
Jilin University. They have the characteristics of concentrated 

age distribution and similar daily living habits. The influence of 
the limitations of the subject group on the experimental 
conclusion may require further discussion and analysis. 

E. Future Directions 

Due to the lack of theoretical research on tactile-related EEG, 
we study from the perspective of emotion. Among the many 
emotion-related EEG, FLPA is only studied in this paper. The 
use of more emotion-related EEG features may further improve 
the accuracy of predicting QoE. In addition, establishing a 
connection between tactile-related EEG and the QoE of tactile 
feedback in VR can help to understand the brain activity 
patterns associated with haptic perception. 

Ⅵ. CONCLUSION 

As an advanced application of multimedia, VR with haptic 
feedback will bring users an all-around multi-sensory 
immersive experience. However, there are still many problems 
to be studied in the concrete methods of QoE measurement. The 
QoE assessment of VR with haptic feedback is highly 
dependent on subjective measurements. Inspired by the fact that 
physiological signals can reflect the user's mental state, this 
paper uses EEG-driven physiological measurements to evaluate 
the QoE of VR with vibrotactile feedback. In our research on 
VR experience with vibrotactile feedback, we find that different 
vibration stimuli evoke different FLPA phenomena. FLPA can 
reflect the user's emotional state, and emotion is a psychological 
measurement of QoE. Therefore, it is reasonable to use FLPA 
to measure QoE. SCC is used to screen out FLPA features that 
are not significantly related to the subjective score of QoE. 
Then RF is used to rank the importance of FLPA features and 
select the best indicator 72F . The prediction accuracy of the 
SVM classifier trained with a one-dimensional feature 72F can 
reach 0.75, which verifies the feasibility of FLPA as a 
physiological indicator to measure QoE. In this paper, we carry 
out exploratory work on objective measurement methods of 
QoE for VR with vibrotactile feedback and achieve mutual 
interpretation of EEG-based physiological measurements and 
subjective cognitive outcomes of QoE. The specific promotion 
and application of the conclusions of this paper in VR remain 
to be studied. 
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